Genetic and epigenetic signaling pathways and their clinical outcomes in inflammatory bowel disease
Genetic and epigenetic insights into inflammatory bowel disease
DOI:
https://doi.org/10.5281/zenodo.16184032Keywords:
Epigenetic, genetic, inflammatory bowel disease, signal pathwayAbstract
Inflammatory bowel diseases (IBD), including Crohn's disease and ulcerative colitis, are chronic progressive immune-mediated inflammatory conditions of the gastrointestinal tract. The etiology of IBD is multifactorial, involving genetic predisposition, environmental factors, immune dysregulation, and gut microbiota. Genetics has played a pivotal role in elucidating the pathogenesis of IBD, with genome-wide association studies (GWAS) identifying more than 200 susceptibility loci. Additionally, epigenetic mechanisms, such as DNA methylation, histone modifications, and noncoding RNAs, have clarified the role of gene-environment interactions in the pathogenesis of IBD. Epigenetic mechanisms regulate key signaling pathways, dynamically modulating disease onset, progression, and therapy response. By unraveling the complex interactions between genetic and epigenetic factors, we can gain deeper insights into disease mechanisms and uncover novel opportunities for therapeutic and diagnostic advancements. In this review, we examine the contributions of genetic and epigenetic research to our understanding of IBD and explore their potential in diagnosis, monitoring, treatment, and personalized medicine.
References
Jarmakiewicz-Czaja S, Zielińska M, Sokal A, Filip R. Genetic and epigenetic etiology of inflammatory bowel disease: An update. Genes (Basel). 2022;13(12):2388.
Hausmann A, Steenholdt C, Nielsen OH, Jensen KB. Immune cell-derived signals governing epithelial phenotypes in homeostasis and inflammation. Trends Mol Med. 2024;30(3):239-51.
de Souza HS, Fiocchi C. Immunopathogenesis of IBD: current state of the art Nat Rev Gastroenterol Hepatol. 2016;13(1):13-27.
El Hadad J, Schreiner P, Vavricka SR, Greuter T. The genetics of inflammatory bowel disease. Mol Diagn Ther. 2024;28(1):27-35.
Hao L, Alkry LT, Alattar A, Faheem M, Alshaman R, Shah FA, et al. Ibrutinib attenuated DSS-induced ulcerative colitis, oxidative stress, and the inflammatory cascade by modulating the PI3K/Akt and JNK/NF-κB pathways. Arch Med Sci. 2022;18(3):805-15.
Jalil AT, Hassan NF, Abdulameer SJ, Farhan ZM, Suleiman AA, Al‐Azzawi AK, et al. Phosphatidylinositol 3‐kinase signaling pathway and inflammatory bowel disease: current status and future prospects. Fundam Clin Pharmacol. 2023;37(5):910-17.
Wang Z, Zhou H, Cheng F, Zhang Z, Long S. miR-21 negatively regulates the PTEN-PI3K-Akt-mTOR signaling pathway in Crohn’s disease by altering immune tolerance and epithelial-mesenchymal transition. Discov Med. 2022;33(170):153-66.
Coskun M, Salem M, Pedersen J, Nielsen OH. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Pharmacol Res. 2013;76:1-8.
Wang L, Hu Y, Song B, Xiong Y, Wang J, Chen, D. Targeting JAK/STAT signaling pathways in treatment of inflammatory bowel disease. Inflamm Res. 2021;70:753-64.
Lei H, Crawford MSS, McCole DF. JAK-STAT pathway regulation of intestinal permeability: pathogenic roles and therapeutic opportunities in inflammatory bowel disease. Pharmaceuticals (Basel). 2021;14(9):840.
Cordes F, Foell D, Ding JN, Varga G, Bettenworth D. Differential regulation of JAK/STAT-signaling in patients with ulcerative colitis and Crohn’s disease. World J Gastroenterol. 2020;26(28):4055-75.
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, et al. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther. 2024;9(1):53.
Long Y, Zhao Y, Ma X, Zeng Y, Hu T, Wu W, et al. Endoplasmic reticulum stress contributed to inflammatory bowel disease by activating p38 MAPK pathway. European Journal of Histochemistry: Eur J Histochem. 2022;66(2):3415.
Tian X, Liu Z, Niu B, Zhang J, Tan TK, Lee SR, et al. E‐cadherin/β‐catenin complex and the epithelial barrier. J Biomed Biotechnol. 2011;2011:567305.
Cosín-Roger J, Ortiz-Masiá D, Calatayud S, Hernández C, Alvarez A, Hinojosa J, et al. M2 macrophages activate WNT signaling pathway in epithelial cells: relevance in ulcerative colitis. PLoS One. 2013;8(10):e78128.
Deng F, Peng L, Li Z, Tan G, Liang E, Chen S, et al. YAP triggers the Wnt/β-catenin signalling pathway and promotes enterocyte self-renewal, regeneration and tumorigenesis after DSS-induced injury. Cell Death Dis. 2018;9(2):153.
Majidinia M, Aghazadeh J, Jahanban‐Esfahlani R, Yousefi B. The roles of Wnt/β‐catenin pathway in tissue development and regenerative medicine. J Cell Physiol. 2018;233(8):5598-612.
Khoramjoo SM, Kazemifard N, Baradaran Ghavami S, Farmani M, Shahrokh S, Asadzadeh Aghdaei H, et al. Overview of three proliferation pathways (Wnt, Notch, and Hippo) in intestine and immune system and their role in inflammatory bowel diseases (IBDs). Front Med (Lausanne). 2022;9:865131.
Ma B, Hottiger MO. Crosstalk between Wnt/β-Catenin and NF-κB signaling pathway during inflammation. Front Immunol. 2016;7:378.
Koch S. Extrinsic control of Wnt signaling in the intestine. Differentiation. 2017;97:1-8.
Gregorieff A, Pinto D, Begthel H, Destrée O, Kielman M, Clevers H. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology. 2005;129(2):626-38.
Lawrence T. The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651.
Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023.
Rahman MM, McFadden G. Modulation of NF-κB signalling by microbial pathogens. Nat Rev Microbiol. 2011;9(4):291-306.
McDaniel DK, Eden K, Ringel VM, Allen IC. Emerging roles for noncanonical NF-κB signaling in the modulation of inflammatory bowel disease pathobiology. Inflamm Bowel Dis. 2016;22(9):2265-79.
Chen R, Pang X, Li L, Zeng Z, Chen M, Zhang S. Ubiquitin-specific proteases in inflammatory bowel disease-related signalling pathway regulation. Cell Death Dis. 2022;13(2):139.
Sinha A, Roy S. Prospective therapeutic targets and recent advancements in the treatment of inflammatory bowel disease. Immunopharmacol Immunotoxicol. 2024;46(4):550-63.
Yeshi K, Jamtsho T, Wangchuk P. Current treatments, emerging therapeutics, and natural remedies for inflammatory bowel disease. Molecules. 2024;29(16):3954.
Ashton JJ, Boukas K, Stafford IS, Cheng G, Haggarty R, Coelho TA, et al. Deleterious genetic variation across the NOD signaling pathway is associated with reduced NFKB signaling transcription and upregulation of alternative inflammatory transcripts in pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2022; 28(6):912-22.
Mukherjee T, Kumar N, Chawla M, Philpott DJ, Basak S. The NF-κB signaling system in the immunopathogenesis of inflammatory bowel disease. Sci Signal. 2024;17(818): eadh1641.
Atreya I, Atreya R, Neurath MF. NF-kappaB in inflammatory bowel disease. J Intern Med. 2008;263(6):591-96.
Morrison HA, Trusiano B, Rowe AJ, Allen IC. Negative regulatory NLRs mitigate inflammation via NF-κB pathway signaling in inflammatory bowel disease. Biomed J. 2023;46(5):100616.
Morris R, Kershaw NJ, Babon JJ. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci. 2018;27(12):1984-2009.
Nada HR, Elmasry MF, El Sharkawy DA, Mamdouh S. Basics of Janus kinases: a review. J Egypt Women’s Dermatol Soc. 2020;17(1):1-5.
Danese S, Grisham M, Hodge J, Telliez JB. JAK inhibition using tofacitinib for inflammatory bowel disease treatment: a hub for multiple inflammatory cytokines. Am J Physiol Gastrointest Liver Physiol. 2016;310(3):G155-62.
Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119-24.
Collins CB, Puthoor PR, Nguyen TT, Strassheim D, Jedlicka P, Friedman JE, et al. C/EBPβ deletion promotes expansion of poorly functional intestinal regulatory T cells. J Crohns Colitis. 2018;12(12):1475-85.
Olivera PA, Lasa JS, Bonovas S, Danese S, Peyrin-Biroulet L. Safety of Janus kinase inhibitors in patients with inflammatory bowel diseases or other immune-mediated diseases: a systematic review and meta-analysis. Gastroenterology. 2020;158(6):1554-73.
Chen Z, Jiang P, Su D, Zhao Y, Zhang M. Therapeutic Inhibition of the JAK-STAT pathway in the treatment of Inflammatory Bowel Disease. Cytokine Growth Factor Rev. 2024;79:1-15.
Sarapultsev A, Gusev E, Komelkova M, Utepova I, Luo S, Hu D. JAK-STAT signaling in inflammation and stress-related diseases: implications for therapeutic interventions. Mol Biomed. 2023;4(1):40.
Feng Z, Kang G, Wang J, Gao X, Wang X, Ye Y, et al. Breaking through the therapeutic ceiling of inflammatory bowel disease: dual-targeted therapies. Biomed Pharmacother. 2023;158:114174.
Kamal S, Lo SW, McCall S, Rodrigues B, Tsoi AH, Segal JP. Unveiling the Potential of JAK Inhibitors in Inflammatory Bowel Disease. Biologics. 2024;4(2):177-86.
Li Y, Lee C, Yu Z, Chen C, Liang C. Ulcerative colitis: molecular insights and intervention therapy. Mol Biomed. 2024;5(1):42.
Liu J, Di B, Xu LL. Recent advances in the treatment of IBD: Targets, mechanisms and related therapies. Cytokine Growth Factor Rev. 2023;71:1-12.
Hayat R, Manzoor M, Hussain A. Wnt signaling pathway: A comprehensive review. Cell Biol Int. 2022; 46(6):863-77.
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. ignal Transduct Target Ther. 2022;7(1):3.
Gieryńska M, Szulc-Dąbrowska L, Struzik J, Mielcarska MB, Gregorczyk-Zboroch KP. Integrity of the intestinal barrier: the involvement of epithelial cells and microbiota—a mutual relationship. Animals. 2022;12(2):145.
Plichta DR, Graham DB, Subramanian S, Xavier RJ. Therapeutic opportunities in inflammatory bowel disease: mechanistic dissection of host-microbiome relationships. Cell. 2019;178(5):1041-56.
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, et al. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis. 2024;11(3):101026.
Pu Z, Yang F, Wang L, Diao Y, Chen D. Advancements of compounds targeting Wnt and Notch signalling pathways in the treatment of inflammatory bowel disease and colon cancer. J Drug Target. 2021;29(5):507-19.
Wang Z, Chang Y, Sun H, Li Y, Tang T. Advances in molecular mechanisms of inflammatory bowel disease associated colorectal cancer. Oncol Lett. 2024;27(6):257.
Antoni L, Nuding S, Wehkamp J, Stange EF. Intestinal barrier in inflammatory bowel disease. World J Gastroenterol. WJG. 2014;20(5):1165-79.
Kandar CC, Sen D, Maity A. Anti-inflammatory potential of GSK-3 inhibitors. Curr Drug Targets. 2021;22(13):1464-76.
Sharma A, Tirpude NV, Kumari M, Padwad Y. Rutin prevents inflammation-associated colon damage via inhibiting the p38/MAPKAPK2 and PI3K/Akt/GSK3β/NF-κB signalling axes and enhancing splenic Tregs in DSS-induced murine chronic colitis. Food Funct. 2021;12(18):8492-506.
Yakkala PA, Naaz F, Shafi S, Kamal A. PI3K and tankyrase inhibitors as therapeutic targets in colorectal cancer. Expert Opin Ther Targets. 2024;28(3):159-77.
Harb J, Lin PJ, Hao J. Recent development of Wnt signaling pathway inhibitors for cancer therapeutics. Curr Oncol Rep. 2019;21:1-9.
Koch S, Nusrat A. The life and death of epithelia during inflammation: lessons learned from the gut. Annu Rev Pathol. 2012;7:35-60.
Moparthi L, Koch S. Wnt signaling in intestinal inflammation. Differentiation. 2019;108:24-32.
Schmitz ML, Weber A, Roxlau T, Gaestel M, Kracht M. Signal integration, crosstalk mechanisms and networks in the function of inflammatory cytokines. Biochim Biophys Acta. 2011;1813(12):2165-75.
Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. Cell. 2017;170(4):605-35.
Dong L, Du H, Zhang M, Xu H, Pu X, Chen Q, et al. Anti‐inflammatory effect of Rhein on ulcerative colitis via inhibiting PI3K/Akt/mTOR signaling pathway and regulating gut microbiota. Phytother Res. 2022;36(5):2081-94.
Cushing TD, Metz DP, Whittington DA, McGee LR. PI3Kδ and PI3Kγ as targets for autoimmune and inflammatory diseases. J Med Chem. 2012;55(20):8559-81.
Dargenio VN, Rutigliano V, Martire B, Pigneur B, Dargenio C, Francavilla R, et al. Inflammatory Bowel Disease in Activated PI3Kδ Syndrome: An Uncommon Complication of a Rare Condition. BioMed. 2024;4(4):493-98.
Khare V, Dammann K, Asboth M, Krnjic A, Jambrich M, Gasche C. Overexpression of PAK1 promotes cell survival in inflammatory bowel diseases and colitis-associated cancer. Inflamm Bowel Dis. 2015;21(2):287-96.
Salmond RJ. mTOR regulation of glycolytic metabolism in T cells. Front Cell Dev Biol. 2018;6:122.
Afzal O, Altamimi AS, Mubeen B, Alzarea SI, Almalki WH, Al-Qahtani SD, et al. mTOR as a potential target for the treatment of microbial infections, inflammatory bowel diseases, and colorectal cancer. Int J Mol Sci. 2022;23(20):12470.
King D, Yeomanson D, Bryant HE. PI3 King the lock: targeting the MAPK/Akt/mTOR pathway as a novel therapeutic strategy in neuroblastoma. J Pediatr Hematol Oncol. 2015;37(4):245-51.
Broom OJ, Widjaya B, Troelsen J, Olsen J, Nielsen OH. Mitogen activated protein kinases: a role in inflammatory bowel disease? Clin Exp Immunol. 2009;158(3):272-80.
Elkholy SE, Maher SA, Abd El-Hamid NR, Elsayed HA, Hassan WA, Abdelmaogood AK, et al. The immunomodulatory effects of probiotics and azithromycin in dextran sodium sulfate-induced ulcerative colitis in rats via TLR4-NF-κB and p38-MAPK pathway. Biomed Pharmacother. 2023;165:115005.
Zheng SY, Fu XB, Xu JG, Zhao JY, Sun TZ, Chen W. Inhibition of p38 mitogen-activated protein kinase may decrease intestinal epithelial cell apoptosis and improve intestinal epithelial barrier function after ischemia-reperfusion injury. World J Gastroenterol. 2005;11(5):656-60.
Natasha G, Zilbauer M. Epigenetics in IBD: a conceptual framework for disease pathogenesis. Frontline Gastroenterol. 2022;13:e22-e27.
Xu J, Xu HM, Yang MF, Liang YJ, Peng QZ, Zhang Y, et al. New insights into the epigenetic regulation of inflammatory bowel disease. Front Pharmacol. 2022;13: 813659.
Marangoni K, Dorneles G, da Silva DM, Pinto LP, Rossoni C, Fernandes SA. Diet as an epigenetic factor in inflammatory bowel disease. World J Gastroenterol. 2023; 29(41):5618–29.
Yan L, Gu C, Gao S, Wei B. Epigenetic regulation and therapeutic strategies in ulcerative colitis. Front Genet. 2023;14:1302886.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 The Injector

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.